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Abstract—A dynamic measuring system is considered. A new model of the measuring system,
a method for processing of measurement results and a method of restoring the input signal of
the system by the noisy output signal are proposed. The estimation of the accuracy of the
method and a computational experiment demonstrating the efficiency of the signal recovery
method are presented.
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1. INTRODUCTION

The efficiency of technological processes is directly related to ensuring the optimal parameters
of process control systems. The accuracy of compliance with and optimization of the parameters
depend on the accuracy of processing of data on the system status. In case of energy-intensive and
high-speed technological processes, the system status changes within a short period of time. Due to
the output signal’s noise pollution and the time lag in the measuring system, we need information
about the input signal in order to learn the actual system status. Another factor, which has a
significant influence on the accuracy of processing the system status data, is the output signal’s
noise pollution. The noise problem, combined with the time lag in the measuring system, becomes
especially serious during processing the dynamic measuring performed within a short period of
time, when even slight noise in the input data can lead to severe misrepresentation of the data
processing results. Many researchers have written their works on the problem of processing noise-
contaminated dynamic signals. Among the works on this research topic we should highlight an
approach based on using the control theory [1]. In this work, a model of a measuring system with
modal control of the dynamic characteristics is proposed; and in work [2], a number of methods for
dynamic error correction, based on the application of the automatic control theory, is proposed.
Another approach to processing of noise-contaminated dynamic measurements implies the creation
of engineering solutions. This field of research includes works by V.A. Granovskiy [3, 4], who
proposed to use test signals for the correction of noise in dynamic measurements. The work by
S. Engelberg [5], which implies the introduction of additional filters to reduce the negative effects
from noise, as well as the work [6], describe a new approach to data collection. A separate field of
research on the processing of noise-contaminated dynamic signals is related to the use of the theory
and methods of inverse problems solving. In this field, works were written by G.N. Solopchenko
[7–9] (who proposed to use the A.N. Tikhonov regularization methods for dynamic measurements),
the work by A.F. Verlan [10] (where the problem of processing of noise-contaminated information
is reduced to solving Fredholm equations of the first kind), as well as the work by A. Forbes [11]
(where the problem of processing of dynamic measurements is presented as an inverse problem
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being solved by using Gaussian process). In this paper, we propose a method of processing noise-
contaminated dynamic measurements, which is based on the effect of self-regularization and does
not require significant re-adjustment of the measuring system parameters.

2. CLOSED-LOOP MEASURING SYSTEM MODEL

At their input measuring systems have a primary measuring transducer (sensor), that is why
the input signal U(t) cannot be measured directly. Due to the time lag in the measuring system
and in order to learn the actual system status, we need to restore the input signal U(t) using the
sensor’s output signal. One of the methods of the input signal restoration was proposed in [12] and
includes a closed-loop measuring system model. The structural model of such system is presented
in Fig. 1.

In this model several groups of coefficients may be distinguished. Group one includes coeffi-
cients ai, related to the output signal, and group two—coefficients bj , related to the input signal.
The next group includes coefficients dj , which act as filter characteristics. The user can adjust
these characteristics depending on the nature of the input signal noise. The final group includes ki,
which are feedback coefficients and are used for the correction of the dynamic error values.

The significant difficulty in using of the closed-loop model is that when the noise level of the
output signal changes, arises a need to correct all the dynamic characteristics of the measuring
system, and new values must be selected for coefficients ki and dj . Meanwhile, the changes in
characteristics of one group do not automatically lead to changes in characteristics of other groups,
and each characteristics within one group is corrected independently for each parameter. Thus,
the process of re-adjustment of dynamic characteristics results in a more complicated algorithm of

Fig. 1. Structural model of the measuring system.
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signal processing. To solve the problem of making the algorithms of output signal processing less
complicated, we need to develop a measuring system model, in which the number of groups of the
parameters set by the user is reduced to a minimum.

3. OPEN-LOOP MEASURING SYSTEM MODEL

In this paper, we propose a discrete model of an open-loop measuring system, which allows
to restore signals by using the noise-contaminated input data and avoid the use of feedback and
additional filters. In other words, the model structure excludes the parameters of feedback ki and
the parameters of filters dj , what allows to reduce the number of the parameters being set. In
the proposed model, the correction block and additional filters are replaced with a block of the
input signal restoration. The block model is given in Fig. 2, where U(t) is the input signal, Uδ(t) is
the restored signal, YM (t) is the model’s output signal, cl, gj are the coefficients of the measuring
system model, l = 0, n, j = 0,m.

Fig. 2. Block of the input signal restoration in the open-loop discrete model. Nomenclature: U(t) input
signal, Uδ(t) restored signal, YM (t) model’s output signal, cl, gj coefficients of the measuring system model,
l = 0, n,j = 0, m.

Let us build the mathematical model of the open-loop measuring system as follows. Based on
the concept proposed in the theory of dynamic measurements [2], transfer function W (p) of the
open-loop measuring system is:

W (p) =
bmpm + bm−1p

m−1 + . . .+ b1p+ b0
anpn + an−1pn−1 + . . . + a1p+ a0

=
y(p)

u(p)
. (1)

At stage one of building the mathematical model of the open-loop system, let us represent
transfer function (1) by differential equation:

any
(n) + an−1y

(n−1) + . . . + a1y
′ + a0y = bmu(m) + bm−1u

(m−1) + . . . + b1u
′ + b0u. (2)

Due to the output signal distortion, the following conditions correspond to the system status at
the initial moment of time t = 0:

y(0) = q0, y′(0) = q1, . . . , y(n−2)(0) = qn−2.
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Let us denote the following:

U = bmu(m) + bm−1u
(m−1) + . . . + b1u

′ + b0u.

Thus, we find that the open-loop mathematical model (2) will look as follows:

any
(n) + a(n−1)y

(n−1) + . . . + a1y
′ + a0y = U, (3)

y(0) = q0, y′(0) = q1, . . . , y(n−2)(0) = qn−2. (4)

The proposed mathematical model (3), (4) is multifunctional. On one hand, it serves as grounds
for validation of the discrete open-loop model, when based on the known input signal U(t), we need
to find function YM(t), which corresponds to the output signal of the open-loop measuring system,
and compare the obtained results to the output signal YS(t), generated by the closed-loop system.
On the other hand, equation (3) is used to develop the computational scheme for restoration of
the input signal U(t) by the known output signal Y (t). It is worth noting that when restoring
the input signal, it is necessary to take into account the fact that noise will be inevitably present
in the measured output signal, so the information sufficient for the restoration of the input signal
by the proposed method implies that its overall level does not exceed a certain level δ. We can
present this situation mathematically as follows. In the problem on restoring the input signal we
need to use the noise-contaminated output signal Y (t) to find the input signal Uδ(t), provided that
deviation Y (t) from the accurate values of the output signal does not exceed the value δ.

4. OPEN-LOOP MODEL VALIDATION

At stage one of the validation, the known input signal U(t) is fed to the closed-loop system
and to the open-loop system. In the closed-loop system, output signal YS(t) is formed, and in the
open-loop system—output signal YM (t). At the next stage of the validation, deviation of YM (t)
from YS(t) is evaluated. If the deviation value does not exceed level δ, the validation is considered
to be successful.

To construct a method of forming of output signal YM(t), the following approach is proposed.
Based on the idea presented in [13], let us define functions zk as follows:

y = z1,

y′ = z′1 = z2,

y′′ = z′2 = z3,

. . .

y(n−2) = z′n−3 = zn−2.

Then, equation (3) can be transformed into a system of differential equations:



































y = z1,

y′ = z′1 = z2,

y′′ = z′2 = z3,

. . .

anz
′′
n−2 + an−1z

′
n−2 + an−2zn−2 + . . .+ a2z

′′ + a1z
′ + a0z = U,

and the conditions of (4) will look as follows:

z1(0) = q0, z2(0) = q1, . . . , z′n−2(0) = qn−2.
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After transforming the last equation in the system, we finally find that the following system can
serve as the basis for the validation of the open-loop model:



































y = z1,

y′ = z′1 = z2,

y′′ = z′2 = z3,

. . .

anz
′′
n−2 + an−1z

′
n−2 + an−2zn−2 = U − an−3zn−3 − . . .− a2z

′′ − a1z
′ − a0z

(5)

with the following initial conditions

z1(0) = q0, z2(0) = q1, . . . , z′n−2(0) = qn−2. (6)

From (5), (6) we need to find functions zk(t), k = 1, n− 2. It is worth noting that problem
(5), (6) pertains to the class of inverse problems, the specific feature of which is that the presence
of noise or slight deviations in the input data can lead to significant misrepresentation of the final
result, so regularization must be used to ensure the method stability in terms of the noise. Ac-
cording to the theory of inverse problems, regularization is fulfilled either by introducing additional
stabilizing functional with a certain regularization parameter to the equation [14], or ‘when solving
some types of problems, it is possible to use only discretization, omitting the regularization step;
this is called the problem self-regularization by discretization’ [15]. In this paper, we propose a
method, in which discretization interval acts as the regularization parameter.

The main stages of forming of YM(t) include the following. First, we need to select some value of
discretization interval τ , by dividing segment [0;T ] into R parts, R = (T − 0)/τ . Then ti = (i− 1)τ ,
and the value of functions zk(t) in the moment of time ti corresponds to zk(ti) = zik, k = 1, n − 2,
i = 1, R + 1. The initial conditions will look like z1k = qk.

Next, based on the finite-difference representations of derivatives

z′n−2(ti) =
zik − zi−1

k

τ
, z′′n−2(ti) =

zin−2 − 2zi−1
n−2 + zi−2

n−2

τ2
, i = 1,K, k = 1, n − 2,

we transform the last equation in system (5). We obtain:

zin−2 =

(

Ui−2 − cn−2z
i−2
n−2 − cn−1

(

zi−1
n−2

τ

))

cn, (7)

where coefficients cn−2, cn−1, cn are the coefficients of the open-loop model and are defined by the
following formulas:

cn−2 =
an
τ2

−
an−1

τ
+ an−2, cn−1 =

−2an
τ

+ an−1, cn =
τ2

an
,

values Ui are formed from input signal U = bmu(m) + bm−1u
(m−1) + . . . + b1u

′ + b0u. Next, from
the remaining equations of system (5) with the use of (7), we find values zik, k = n− 3, 1 all the
way to values zi1, which correspond to values YM (ti).

The validation process is considered to be successful if we meet the condition |YM (ti)−YS(ti)| 6 δ
in each moment of time ti; if otherwise, we must return to the initial stage of the computational
scheme with a new parameter τ .
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5. METHOD OF THE INPUT SIGNAL RESTORATION

The method of restoration of input signal Uδ(t) by using the known noise-contaminated output
signal Y (t) is based on the finite-difference analogue of equation (2) with fixed τ , obtained at the
stage of validation of the open-loop model, and the following initial conditions:

u(0) = r0, u′(0) = r1, . . . , u(m−2)(0) = rm−2. (8)

To build the computational scheme for restoration of input signal Uδ(t), let us introduce the
following Y = any

(n) + an−1y
(n−1) + . . .+ a1y

′ + a0. By applying Y to equation (2), we obtain the
following:

bmu(m) + bm−1u
(m−1) + . . . + b1u

′ + b0u = Y.

Next, like at the validation stage, we use the method of reduction of order and substitute the
variables as follows:

u = v1,

u′ = v′1 = v2,

u′′ = v′2 = v3,

. . .

u(n−2) = v′n−3 = vn−2.

As a result, we obtain the following system:



































u = v1,

u′ = v′1 = v2,

u′′ = v′2 = v3,

. . .

bmv′′m−2 + bm−1v
′
m−2 + bm−2vm−2 = Y − bm−3vm−3 − . . .− b2v

′′ − b1v
′ − b0v

(9)

with the following initial conditions: v(0) = r0, v
′(0) = r1, . . . , v

′
m−2(0) = rm−2.

The main idea of the proposed method implies that at each step of the iteration process, first,
by using the finite-difference analogue of the last equation of system (9), we find value v′m−2(ti) in
the current moment of time ti according to formula

vim−2 =

(

Yi−2 − gm−2v
i−2
m−2 − gm−1

(

vi−1
m−2

τ

))

gm, (10)

where coefficients gm−2, gm−1, gm are the coefficients of the open-loop model and are defined by the
following formulas:

gm−2 =
bm
τ2

−
bm−1

τ
+ bm−2, gm−1 =

−2bm
τ

+ bm−1, gm =
τ2

bm
.

Next, using the finite-difference analogues of derivatives, we obtain the solution for system (9), and
find value v′m−2(ti) in the current moment of time ti. Upon completion of the iteration process, we
obtain all values vi1, 1,K . These values correspond to the restored signal Uδ(ti).

The main advantage of the proposed method of the input signal restoration is that the dynamic
error is corrected thanks to the effect of self-regularization, and the noise level in the restored input
signal Uδ(t) does not exceed the noise level in the output signal.
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In [16, 17], the theoretical evaluation of the error of the input signal restoration method was
performed. As a result, the criterion was formulated for discretization interval τ :

τδ2 6
c1
c2

+ c0
c2

g1
g2

+ g0
g2

. (11)

Condition (11) proves the dependence of the method stability on τ . According to the concept
presented in [15], discretization interval τ is a regularization parameter, and the proposed method
has the effect of self-regularization.

The advantage of the proposed open-loop model and the input signal restoration method is that
these do not require the re-adjustment of the coefficients of dynamic characteristics ki and dj , and
this allows to make the computational scheme significantly more simple.

6. VERIFICATION OF THE MEASURING SYSTEM MODEL
AND THE INPUT SIGNAL RESTORATION METHOD

The verification of the measuring system model and the input signal restoration method was
performed through experimental research, including computational experiments. In the course of
the computational experiments, first, we used simulation modelling to form the test values of input
signal U(t). We used the test values for comparative analysis with the calculated values Uδ(t). In
the course of further experimenting, we restored input signal Uδ(t) by the experimental values of
output signal Y , using the discretization interval obtained at the previous stages of the research.
Next, we compared the restored signal to input signal U(t).

6.1. Computational Experiment Technique

The computational experiment included two stages. The goal of stage one was the numerical
validation of the open-loop model. At this stage, discretization interval τ was selected. The goal
of stage two was the numerical verification of the input signal restoration method. The experiment
scheme is given in Fig. 3.

Fig. 3. Structural scheme of the computational experiment: a model adjustment stage; b signal restoration
stage.
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Stage I. Model validation. First, signal U(t) was fed to the model with correcting feedback (WS)
and to the model without feedback (WM ) independently of each other. Next, we formed output
signals YM and YS . Then, we did the calculation:

∆Y = max
t∈[0,T ]

|YM (t)− YS(t)|.

If ∆Y > δ, then we selected a new value τ according to conditions of (11), a new output signal YM

was formed, and we recalculated ∆. Upon the attainment of the condition ∆Y 6 δ, value τ was
fixed, and we moved to stage two of the experiment.

Stage II. Signal restoration. At this stage, noise-contaminated signal Y was fed to open-loop
model WM . Next, using parameter τ obtained at stage one, we found values Uδ, which corresponded
to the restored input signal. Finally, we evaluated deviation of Uδ from U with the help of value

∆U = max
t∈[0,T ]

|Uδ(t)− U(t)|.

Value ∆U is the estimation of the accuracy of the input signal restoration method.

6.2. Computational Experiment Results

In this paper, we have presented the results of the experimental research for various orders of
measuring systems regarding the restoration of the input signal by using the noise-contaminated
data.

In the computational experiment, as the input signal, we took function U(t) = 1, and noise level
δ = 5%. The experiment was conducted for measuring systems of the following orders, as given in
the Table:

Computational experiment parameters

Measuring system order Transfer function

II+I
b1p+ b0

a2p2 + a1p+ a0

IV+0
b0

(a2p2 + a1p+ a0)(a5p2 + a4p+ a3)

V+III
(b1p+ b0)(b4p

2 + b3p+ b2)

(a2p2 + a1p+ a0)(a5p2 + a4p+ a3)(a7p+ a6)

Experiment results for the measuring system with the second order for the output signal and
with the first order for the input signal (II+I) are presented in Fig. 4.

Deviation of the restored signal from the input one in the experiment equaled no more than 5%
at τ = 1.2× 10−3.

Experiment results for the measuring system with the fourth order for the output signal and
with the zeroth order for the input signal (IV+0) are presented in Fig. 5.

Deviation of the restored signal from the input one in this experiment equaled no more than 5%
at τ = 1.75 × 10−3.

Experiment results for the measuring system with the fifth order for the output signal and with
the third order for the input signal (V+III) are presented in Fig. 6.

Deviation of the restored signal from the input one in the experiment equaled no more than 5%
at τ = 1.75 × 10−3.

The experiment results prove the stability of the method of the input signal restoration by using
the open-loop model for systems of various orders, i.e., the noise level in the restored signal remains
within the controlled limits.
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Fig. 4. (a) Charts of the source input signal U(t) and the restored signal Uδ(t). (b) Deviation of the restored
signal from the input one for the system with the second order for the output signal and with the first order
for the input signal ∆U .

Fig. 5. (a) Charts of the source input signal U(t) and the restored signal Uδ(t). (b) Deviation of the restored
signal from the input one for the system with the fourth order for the output signal and with the zeroth order
for the input signal ∆U .

Fig. 6. (a) Charts of the source input signal U(t) and the restored signal Uδ(t). (b) Deviation of the restored
signal from the input one for the system with the fifth order for the output signal and with the third order
for the input signal ∆U .
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7. CONCLUSION

In this paper, we have proposed the open-loop measuring system model and the method of
the input signal restoration by the noise-contaminated output signal for a random order dynamic
system. The input signal restoration method is based on using of regularization approaches. It
has been demonstrated that this method has the effect of self-regularization. On the grounds
of the built computational schemes, the computational experiment has been conducted and the
comparative analysis has been performed regarding the results of restoration of the input signal
with test functions. The experiment results prove that the proposed method maintains the level
of error in the restored input signal at the level of error of the input data for various orders of
measuring system.
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